Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)
Seve	nth Semester (4 th year of UG)				
1.	CAD-CAM	ME401	3-1-2	5*	100
2.	Industrial Management Techniques	ME403	3-1-0	4	70
3.	Elective – IV	ME45x	3-0-0	3	55
4.	Elective – V	ME45x	3-0-0	3	55
5.	Elective – VI	ME45x	3-0-0	3	55
			Total	18	335
6.	Project	ME405	0-0-4	2	70
7.	Minor/Honor	M/HMEXX	3-1-0	4	70
8.	Minor/ Honor – Project	M/HMEXX	0-0-4	2	70
Eight	h Semester (4 th year of UG)	'			
1.	Internship	ME402	0-0-40	20	800 (20 x 40)
			Total	20	800

(List of Elective / Honors / Minors)

Sr. No.	Electives	Code
	Elective - IV [Semester - VII]	
1	Computational Machine Design	ME451
2	Design of Material Handling Equipment	ME453
3	Vehicle Dynamics	ME455
4	Design of Heat Exchangers	ME457
5	Energy Efficiency in Industrial Utilities	ME459
6	Fundamentals of Combustion	ME461
7	Sheet Metal Forming	ME463
8	Production and Operations Management	ME465
9	Automation and Process Control for Smart Manufacturing	ME467
	Elective - V [Semester - VII]	
1	Theory of Elasticity	ME469
2	Rotor Dynamics	ME471
3	Machine Tool Design	ME473
4	Radiation Heat Transfer	ME475

Department of Mechanical Engineering

B.Tech. -IV, Mechanical Engineering (As per NEP)

5	Advanced Refrigeration and -Air-conditioning Systems	ME477
6		ME479
_	Gas Dynamics	ME481
7	Foundry Technology	
8	Manufacturing of Composites	ME483
9	Computer Integrated Manufacturing	ME485
	Elective - VI [Semester - VII]	4
1	Design of Pressure Vessels	ME487
2	Theory of Plates and Shells	ME489
3	Continuum Mechanics	ME491
4	Two Phase Flow	ME493
5	Cryogenics Engineering	ME495
6	Design of Solar Thermal Systems	ME497
7	Surface Engineering & Heat Treatment	ME499
8	Hybrid Machining Processes	ME501
9	Project Management	ME503
	Honors	
1	Advanced Vibration	MEHD4
2	Design And Analysis of Rotodynamic Machines	MEHT4
3	Metal Additive Manufacturing	МЕНМ4
4	Energy Conservation, Management and Audit	MEHE4
	Minors	
1	Industrial Engineering and Management	MEM44

B.Tech. IV (DoME) Semester – 7 CAD-CAM	Scheme	L	Т	Р	Credit
ME401		3	1	2	05

At the	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the fundamental principles of CAD and learn drafting commands to generate part drawing.
CO2	Apply 2D and 3D transformation concept to find and describe geometry position.
CO3	Demonstrate modelling of parametric curves and procedure of FEA.
CO4	Explain the fundamental principles of CAM and learn CNC programming techniques and APT language to generate the tool paths and tool motion.
CO5	Show computer aided process planning and flexible manufacturing systems and their types.
CO6	Develop the CNC part program for a given part drawing for machining centre.

2.	Syllabus	
	PRINCIPLES OF COMPUTER AIDED DESIGN	(05 Hours)
Computer configuration for CAD applications, Computer peripherals for CAD		
	FUNDAMENTALS OF COMPUTER GRAPHICS	(15 Hours)
	Introduction to two-dimensional transformation, Two dimensional transformations, parallel & intersecting lines, rotation, reflection, scaling and combined to Rotation about an arbitrary point, reflection about arbitrary line, Homogenes system, Three-dimensional transformation-scaling, shearing, rotation, reflection orthographic, axonometric, foreshortening factor, oblique projection, in perspective projection	ansformations, ous coordinate on, projections-
	PLANE CURVES AND SPACES	(08 Hours)
	Curve representation, Parametric and non -parametric curves, Parametric preser ellipse, parabola, and hyperbola. Cubic spline, Bezier curve and B spline curve	tation of circle,
		ntation of circle,

Department of Mechanical Engineering

B.Tech. -IV, Mechanical Engineering (As per NEP)

B.Tech. –IV, Mechanical Engineering (As per NEP) Overview of main components of CNC machine tools; Introduction to machini	a contars and			
turning centers				
FUNDAMENTALS OF CNC TECHNOLOGY				
Overview of CNC machine components and comparison with conventional machine tools; Working principle and applications of stepper motors; Types of feedback devices: construction, working principles, and numerical examples; Open-loop vs. closed-loop CNC systems: features, advantages, and limitations				
CNC PROGRAMMING FOR MILLING MACHINE (
Introduction to G-Codes and M-Codes: Common G-Codes such as G00, G01, G17, G18, G19, G20, G21, G28, G43, G54–G59, G90, G91, G94, G95; Common M01, M02, M03, M04, M05, M06, M08, M09, M30; Introduction to other word, H-word, N-word (as per Fanuc controller). Basic and Advanced Part Calculation of cutter path coordinates; Writing part programs for simple common rectangle and triangle contouring); Contouring components with linear and circ Pocket machining (rectangular or circular pockets) with given step-over. Cannot Associated Codes: Key canned cycles and associated codes: G80, G81, G82, G699; Syntax, working, and programming examples for random holes and (rectangular, bolt circle, etc.). Subprograms: Introduction to M98 and M99 codes and benefits; Writing part programs using subprograms for repetitive patternarrays, bolt circles) and identical geometric features. Mirroring Commands mirroring commands: applications, advantages, and limitations; Writing part program without a master tool); Relevant codes for tool length setup in part program. Radius Offset Commands: Introduction to G40, G41, and G42 commands: purpor Rules and best practices for applying cutter radius offsets; Writing part program radius offsets for complex geometries.	A-Codes: M00, rds: T-word, S-Programming: ponents (e.g., ular elements; ed Cycles and 83, G73, G98, hole patterns applications, rns (e.g., hole coverview of rograms using method (with mming. Cutter is e and usage;			
AUTOMATICALLY PROGRAMMED TOOLS (APT) LANGUAGE	(05 Hours)			
Overview of APT as a computer-aided programming language; Key components: Geometry statements, Motion statements, Postprocessor statements, Auxiliary statements; Writing APT programs for drilling holes and hole patterns				
MANUFACTURING SYSTEMS, GROUP TECHOLOGY, FLEXIBLE MANUFACTURING SYSTEMS AND PROCESS PLANNING	(05 Hours)			
Definition and key components and their roles; Classification; Overview of GT and methodologies; Concept of cellular manufacturing, layout types: inline, loop, rectangular Overview of FMC and FMS, Components of FMS, Types of FMS cells and layouts, Types flexibility in FMS; Definition of processes planning and significance in manufacturing Traditional vs. Computer-Aided Process Planning (CAPP); Advantages and types of CAPP (Total Contact Time: = 60 Hour				

3.	Practical
1	Applying drafting commands using drafting software/sketcher mode in packages
2	Creating part drawings based on given sketches as per dimensions
3	Applying programming technique for generating drawings in drafting
4	Applying programming knowledge to design a mechanical part.
5	Applying CAD commands to build 3D models
6	CNC part programming with linear and circular interpolation using a suitable controller
7	CNC part programming for circular and rectangular pocket with a suitable controller
8	CNC part programming for contouring, and bolt circle hole pattern using canned cycles in Cartesian and polar coordinate systems with a suitable controller
9	CNC part programming using mirror and subprogram commands with a suitable controller
10	CNC part programming with tool radius compensation using a suitable controller.

3.	Books Recommended
1	D. F. Rogers and J. A. Adams, "Mathematical Elements for Computer Graphics", McGraw Hill Education, 2017
2	P. N. Rao, "CAD/CAM: Principles and Applications", 3rd Edition, Tata McGraw Hill, 2017
3	M. P. Groover and E. W. Zimmers, "Computer Aided Design and Manufacturing", Prentice Hall India (Pearson Education), 2003
4	S. K. Sinha, "CNC Programming (Fanuc Control)", Galgotia Publications, 2011
5	M. P. Groover, "Automation, production systems, and computer-integrated manufacturing, 4 th Edition, Pearson Education India, 2016

B.Tech. IV (DoME) Semester – 7 INDUSTRIAL MANAGEMENT TECHNIQUES	Scheme	L	Т	Р	Credit
ME403		3	1	0	04

1	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Develop Linear Programming (LP) models for engineering and management systems, and apply solution techniques and algorithms to solve these problems.
CO2	Solve assignment & transportation models for engineering and management systems, and apply solutions techniques and algorithms to solve these problems.
CO3	Build Network models for engineering and management systems, and apply solution techniques and algorithms to solve these problems
CO4	Formulate Queuing models for engineering and management systems, and apply solution techniques and algorithms to solve these problems
CO5	Apply strategies and payoff to solve game theory problems
CO6	Choose statistical process control tools for designing of products and process controls.

2.	Syllabus				
	LINEAR PROGRAMMING PROBLEMS	(11 hours)			
	Formulation, Graphical method, Simplex method, Difficulties in Simplex method,				
	ASSIGNMENT AND TRANSPORTATION MODELS	(09 hours)			
	Allocations, Problem of imbalance, Hungarian assignment method, Alte Travelling salesman problem, basic transportation problem, unbalanced problem, Optimal solution, degeneracy, Transhipment and Inventory control problem.	transportation			
	NETWORK ANALYSIS	(08 hours)			
	Project Management, Network analysis, Critical Path Activities, Program E Review Techniques (PERT), Crashing analysis, Activity on node analysis scheduling.				
	STATISTICAL PROCESS CONTROL	(08 hours)			

Discrete and continuous probability distributions, Control C Type I and II errors, Process capability, Acceptance Sampling sampling plans).	
QUEUING THEORY	(05 hours)
Models, Elements, Operating Characteristics and Determinis	stic queuing models.
GAME THEORY	(04 hours)
Two Person Zero Sum Games, Dominance Rule, Application problems.	of Linear Programming to game
	(Total Contact Time: = 45 Hours

3.	Books Recommended
1	H. A. Taha, Operations research: An Introduction. 10 th Edition, Pearson Education, 2019.
2	S. D. Sharma, Operations Research: Theory, Method & Applications, 1 st Edition, Kedarnath Ramnath Publishers, 2012
3	P. K. Gupta and D. S. Hira, Operations Research, Revised Edition, S. Chand & Company Ltd., 2017
4	A. Mitra, Fundamentals of Quality Control and Improvement, 3 rd Edition, John Wiley & Sons, 2008
5	N. D. Vohra, Quantitative Techniques in Management, 5 th Edition, Mc-Graw Hill, 2017

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 COMPUTATIONAL MACHINE DESIGN (ELECTIVE-IV)	Scheme	L	Т	Р	Credit
ME451		3	0	0	03

	. Course Outcomes (COs):	
Attn	e end of the course, students will be able to	
CO1	Summarize the computer aided aspects of machine design.	
CO2	Select numerical techniques for optimization of design.	
CO3	Explain the concepts of static analysis methods for machine design.	:1
CO4	Apply finite difference method for transient analysis.	
CO5	Describe and apply concepts for dynamic analysis.	
CO6	Utilize finite element method to solve spring and truss problems.	

2.	Syllabus	
	COMPUTER AIDED ASPECTS OF MACHINE DESIGN	(07 Hours)
35 (************************************	Introduction to mechanical design, formulation of a specific design praspects of machine design, failure under dynamic loading.	roblem, computer aideo
	OPTIMIZATION OF DESIGN	(09 Hours)
	Conventional design method and Optimum design method, optimus gradient vector, hessian matrix, unconstrained minimization of	functions, constrained
	optimization-Lagrange`s multiplier, numerical optimization-Newton convergence-Cauchy`s method, Fletcher-Reeves method, optimization	
	convergence-Cauchy`s method, Fletcher-Reeves method, optimizatio	(07 Hours)
	convergence-Cauchy's method, Fletcher-Reeves method, optimizatio STATIC ANALYSIS Determinant and matrices, Static analysis methods-gauss elimination,	(07 Hours)
	convergence-Cauchy's method, Fletcher-Reeves method, optimization STATIC ANALYSIS Determinant and matrices, Static analysis methods-gauss elimination, Cholesky's factorization method, Potter's method	(07 Hours) Gauss-Jordan method (07 Hours)

DoME

Basic concepts of eigenvalue problems, properties of eigenvalues and vectors, modal matrix, orthogonality, cyclic symmetric structures-free vibration analysis
FINITE ELEMENT ANALYSIS (09 Hours)
Introduction to Finite Element Method, FEM terminology, stiffness matrix-element and global, element equation, displacement function and shape function, spring element, truss element, dynamic analysis of frames
(Total Contact Time: = 45 Hours

3.	Books Recommended
1	R. V. Dukkipati, M. A. Rao and R. Bhat, Computer Aided Analysis and Design of Machine Elements, New Age International Pvt. Ltd., 2015
2	S.S. Rao, Engineering Optimization: Theory and Practice, John Wiley and Sons Inc., 2020
3	R. G. Budynas and K. Nisbett, Shigley's Mechanical Engineering Design, 11th Edition, McGraw Hill, 2020
4	V. Ramamurti, Finite Element Method in Machine Design, Narosa Publishing House Pvt. Ltd., 2009
5	D. L. Logan. A first course in the finite element method. Cengage Learning, 2016

B.Tech. IV (DoME) Semester – 7	Scheme		т	D	Credit
DESIGN OF MATERIAL HANDLING EQUIMENT		-	38.5	r	Credit
(ELECTIVE-IV)		3	0	0	03
ME453					

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Understand the fundamentals of material handling equipment.
CO2	Develop a conveyors and selection based on the application.
CO3	Choose of hoists, pulleys and brakes.
CO4	Design of cranes.
CO5	Design of bucket and cage elevator.
CO6	Analyse packaging and storage of bulk materials.

2.	Syllabus	
	Introduction: Objectives of material handling system, Principal groups of materials handling equipment and classification, Scope of Material Handling, Criteria for selection of Material Handling Equipment's, Basic kind of material handling problems, Various methods to analyse material Handling problems.	(15 Hours)
	Conveyor Design: Introduction to apron conveyors, Pneumatic conveyors, Belt Conveyors, Screw conveyors and vibratory conveyors and their applications, Design of Belt conveyor- Belt selection procedure and calculation of drop energy, Idler design.	
	Design of Bucket Elevator: Introduction, Types of Bucket Elevator, Design of Bucket Elevator- loading and bucket arrangements, Cage elevators, shaft way, guides, counter weights.	(15 Hours)
	Packaging and Storage of Bulk Materials: Steps for design of packages, protective packaging, testing the physical characteristics of packaging, container testing, types of storage and industrial containers, Automatic guided vehicles, Automatic storage and retrieval system.	
	Design of Bucket Elevator: Introduction, Types of Bucket Elevator, Design of Bucket Elevator- loading and bucket arrangements, Cage elevators, shaft way, guides, counter weights.	(15 Hours)

protec contai	ging and Storage of Bulk Materials: Steps for design of packages, tive packaging, testing the physical characteristics of packaging, ner testing, types of storage and industrial containers, Automatic guided es, Automatic storage and retrieval system.	
	(Total Contact Time: = 4	15 Hours)

3.	Books Recommended
1	S. Ray, Introduction to Materials Handling, New Age International Private Limited, 2007.
2	M. P. Stephens, Manufacturing Facilities Design & Material Handling, 6 th Edition, Pearson Education Inc., 2019.
3	R. A. Kulwiec, Material Handling Handbook, 2 nd Edition, John Wiley and Sons, ASME, USA, 1991.
4	K. C. Arora and V. V. Shinde, Aspects of Materials Handling, Firewall Media, 2007.
5	D. C. Boyd and S. Panigrahi, Design and Selection of Bulk Material Handling Equipment and Systems, Wide Publications, 2012.

B.Tech. IV (DoME) Semester – 7	Scheme		т	P	Credit
VEHICLE DYNAMICS (ELECTIVE-IV)		•	•		Credit
ME455		3	0	0	03

i and the second	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Understand the dynamics of vehicle ride.
CO2	Calculate and refer the loads and forces associated to the vehicles.
соз	Analysis of steering characteristics and vehicles stability.
CO4	Compare the behaviour of the vehicles under acceleration, ride and braking.
CO5	Formulate tire mechanics and its construction.
CO6	Analyse motorcycle dynamics.

2.	Syllabus	
	Performance Characteristics of Vehicle: SAE vehicle axis system, Forces and moments affecting vehicle, earth fixed coordinate system, dynamic axle loads, equations of motion, transmission characteristics, vehicle performance, power limited and traction limited acceleration, braking performance, brake proportioning, braking efficiency. Aerodynamics: Mechanics of air flow around a vehicle, pressure distribution on a vehicle, aerodynamic forces, drag components, aerodynamics aids.	(15 Hours)
	Steering Characteristics: Steering linkages, steering system forces and moments, steering system models, steering geometry, steady handling (2 dof steady state model), understeer and oversteer, effect of tire camber and vehicle roll (3 dof steady-state model), transient handling and directional stability (2 dof unsteady model), effect of vehicle roll on transient handling (3 dof unsteady model), steady-state and transient handling of articulated vehicles.	(15 Hours)
	Stability of Vehicles: Load distribution, calculation of tractive effort and reactions for different drives, stability of a vehicle on a slope, curve and a banked road.	
	Tire Mechanics: Tire construction, size and load rating, terminology and axis system, tractive properties, cornering properties, camber thrust, aligning moment, combined braking and cornering, conicity and ply steer, slip, skid,	(15 Hours)

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

rolling resistance, elastic band model for longitudinal slip, simple model for lateral slip, combined longitudinal/lateral slip (friction ellipse), taut string model for lateral slip, magic tire formula.

Motorcycle Dynamics: Kinematic structure of motorcycle, geometry of motorcycles, importance of trail, resistance forces acting on motorcycle, location and height of motor cycle's centre of gravity, moments of inertia on motorcycle, front and rear suspensions of motorcycle.

(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	J. Y. Wong, Theory of Ground Vehicles, Wiley, 2008.
2	B. P. Minaker, Fundamentals of Vehicle Dynamics and Modelling, Wiley, 2019.
3	D. J. N. Limebeer and M. Massaro, Dynamics and Optimal Control of Road Vehicles, Oxford University Press, 2018.
4	R. N Jazar, Vehicle Dynamics: Theory and Application, 2nd Ed., Springer, 2013.
5	G. Rill, Road Vehicle Dynamics Fundamentals and Modelling, Taylor & Francis, 2012.

B.Tech. IV (DoME) Semester – 7 DESIGN OF HEAT EXCHANGERS (ELECTIVE-IV)	Scheme	L	Т	Р	Credit
ME457		3	0	0	03

	e end of the course, students will be able to	
CO1	Summarize the different types of heat exchanger used in application.	
CO2	Estimate the performance of shell and tube type heat exchanger.	
CO3	Analyze the performance of tube finned heat exchanger.	
CO4	Evaluate the performance of plate finned heat exchanger.	
CO5	Calculation of pressure drop in compact heat exchanger.	
CO6	Design the heat exchanger for the radiation furnace.	

2.	Syllabus					
	INTRODUCTION	(08 hours)				
	Classification of heat exchanger, selection of heat exchanger, overall heat transfer coefficient, LMTD method for heat exchanger analysis for parallel, counter, multi-pass and cross flow heat exchanger, e-NTU method for heat exchanger analysis, fouling, cleanliness factor, percent over surface, techniques to control fouling, additives, rating and sizing problems, heat exchanger design methodology					
	DESIGN OF DOUBLE PIPE HEAT EXCHANGERS	(12 hours)				
	Thermal and hydraulic design of inner tube and annulus, total pressure drop, T transfer and pressure loss calculations	ube – Side heat				
	DESIGN OF SHELL & TUBE HEAT EXCHANGERS	(12 hours)				
	Basic components, basic design procedure of heat exchanger, approximate stube heat exchangers, shell – side and tube – side calculations. Design procedufinned tubes, TEMA code, J-factors, conventional design methods, Bell-Delaw	re for plain and				
	DESIGN OF COMPACT HEAT EXCHANGERS AND REGENERATORS	(08 hours)				

Heat transfer enhancement, plate fin heat exchanger, tube fin heat exchanger and pressure drop, Types of regenerator matrix. Design of coils. D radiator.	
DESIGN OF RADIATION FURNACES AND FOULING MECHANISMS	(05 hours)
Well stirred model and longitudinal model.	
(Total Conta	act Time: = 45 Hours)

3.	Books Recommended
1	R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchangers Design, John Wiley & Sons, 2003
2	S. Kakaç, H. Liu, A. Pramuanjaroenkij, Heat Exchangers: Selection, Rating, and Thermal Design, Third Edition, CRC Press, 2012
3	W. M. Kays and A. L. London, Compact Heat Exchangers, McGraw Hill, New York, 1964
4	Saunders E. A. D., Heat Exchangers - Selection, Design and Construction, Longman Scientific & Technical, 1998
5	J.E. Hesselgreaves, R.Law, D. Reay, Compact Heat Exchangers, Selection, Design and Operation, 2nd Edition, Butterworth-Heinemann, 2016

B.Tech. IV (DoME) Semester – 7 ENERGY EFFICIENCY IN INDUSTRIAL UTILITIES	Scheme	L	Т	Р	Credit
(ELECTIVE-IV) ME459		3	0	0	03

	Course Outcomes (COs): e end of the course, students will be able to
CO1	Apply various energy conservation techniques to estimate energy saving potential in boiler, steam and furnace systems.
CO2	Evaluate the performance of a furnace along with general fuel economy measures.
соз	Analyze and evaluate the thermodynamic performance of cogeneration systems.
CO4	Design and optimize waste heat recovery systems for specific industrial applications.
CO5	Compute various performance parameters of HVAC systems and suggest suitable ways for improving energy efficiency.
CO6	Conclude the performance and efficiency of heat exchangers using theoretical models and practical calculations.

2.	Syllabus				
	ENERGY EFFICIENCY IN BOILER, STEAM AND FURNACE SYSTEM UTILITIES	(12 Hours)			
	Introduction to Boilers, Performance evaluation of boilers, Energy Conservation opportunities, Introduction to Steam Traps, Steam Distribution, Proper Selection, Operation and Maintenance of Steam Traps, Performance assessment methods for steam traps, efficient Steam Utilization and Energy Saving Opportunities, Introduction to Furnaces, Performance evaluation of a typical fuel fired furnace, General Fuel Economy Measures in Furnaces.				
	COGENERATION	(10 Hours)			
	Principle of cogeneration, technical options for cogeneration, Factor cogeneration choice, Important technical parameters for cogeneration, Principle of Cogeneration, Relative merits of Cogeneration Systems, Case study on savoithout cogeneration.	ne movers for			
	WASTE HEAT RECOVERY	(10 Hours)			
	Introduction, Classification and Application, Benefits of Waste Heat Recovery, of a Waste Heat Recovery System, Commercial Waste Heat Recovery Devices	10.50			
	ENERGY EFFICIENCY IN HVAC AND REFRIGERATION UNITS	(08 Hours)			

Performance assessment of refrigeration units, Factors affecting energy efficiency is refrigeration plants, Energy saving opportunities in cold storage systems, Heat Pumps and Applications, Standards and Labelling of Room Air-conditioners.		
HEAT EXCHANGERS	(05 Hours	
Introduction, Types, Pinch analysis and Pinch Technology application for process and Energy Efficiency Improvements.		
	(Total Contact Time: = 45 Ho	

3.	Books Recommended
1	General Aspects of Energy Conservation, Management and Audit: Guide Book for Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of Power, 2015
2	Energy Efficiency in Electrical Utilities: Guide Book for Energy Managers and Energy, 2015
3	Auditors; Bureau of Energy Efficiency, Ministry of Power,2015
4	Energy Efficiency in Thermal Utilities: Guide Book for Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of Power, 2015
5	S. A. Roosa, Energy Management Handbook, Fairmont Press, 2018

B.Tech. IV (DoME) Semester – 7 FUNDAMENTALS OF COMBUSTION ELECTIVE-IV)	Scheme	L	Т	Р	Credit
ME461		3	0	0	03

1 At th	e end of the course, students will be able to
CO1	Describe different combustion mechanisms and how these can be efficiently used in engineering applications.
CO2	Evaluate thermodynamics parameters of combustion phenomena.
CO3	Analyse chemical kinetics and physics of combustion process.
CO4	Explain basic concepts of premixed flames; modelling and application to energy systems.
CO5	Outline basic concepts of diffusion flames; modelling and application to energy systems.
CO6	Illustrate different types of pollutants generated in combustion, their effects on health and on the environment.

2.	Syllabus			
	INTRODUCTION	(04 Hours)		
	Introduction to combustion, Applications of combustion, Types of fuel and oxidizers, Characterization of fuel, Various combustion mode, Scope of combustion.			
	THERMODYNAMICS OF COMBUSTION	(08 Hours)		
	Thermodynamics properties, Laws of thermodynamics, Stoichiometry, T	hermochemistry		
	adiabatic temperature, Chemical equilibrium.			
	COMBUSTION KINETICS	(08 Hours)		
		1		
	COMBUSTION KINETICS Basic Reaction Kinetics, Elementary reactions, Chain reactions, Multi-	1		
	COMBUSTION KINETICS Basic Reaction Kinetics, Elementary reactions, Chain reactions, MultiSimplification of reaction mechanism, Global kinetics.	tistep reactions		

Laminar premixed flame, laminar flame structure, Laminar flame speed, f measurements, Flame stabilizations.	lame speed
DIFFUSION FLAME	(08 Hours)
Gaseous Jet diffusion flame, Liquid fuel combustion, Atomization, introdu Solid fuel combustion	iction to Spray and
COMBUSTION AND ENVIRONMENT	(05 Hours)
Atmosphere, Chemical Emission from combustion, Quantification of emis	sion, Emission
(Total Contac	ct Time: = 45 Hours

3.	Books Recommended
1	K.K. Kuo, Principles of Combustion, John Wiley and Sons, 2005
2	S.R. Turns, An introduction to combustion, New York: McGraw-Hill, 2017
3	C.K. Law, Combustion physics, Cambridge University Press, 2010
4	D.P. Mishra, Fundamentals of Combustion, Prentice Hall of India, 2010
5	H. S. Mukunda, Understanding combustion, Universities Press, 2009

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 SHEET METAL FORMING (ELECTIVE-IV)	Scheme	L	Т	Р	Credit
ME463		3	0	0	03

1 At th	e end of the course, students will be able to
CO1	Explain the concept of material yielding and plastic behavior of sheet.
CO2	Summarize the significance of intrinsic material properties used in the sheet metal forming.
соз	Examine an insight of the sheet deformation processes, load instability and tearing in sheet metal forming.
CO4	Classify various modes of deformation and defects involved in sheet metal forming Processes.
CO5	Analyze principles, capabilities and applications of sheet metal forming processes.
CO6	Evaluate the formability criteria for sheet metal component manufacturing.

2.	Syllabus			
	FUNDAMENTALS OF METAL FORMING (03 Hours)			
	Introduction, Advantages of metal forming, cold and hot forming, various metal forming processes, Uniaxial Tensile Test - load–extension diagram, engineering stress–strain curve, true stress–strain curve, Anisotropy, Rate sensitivity, Effect of properties on forming.			
	BIAXIAL STRESS TESTING METHODS FOR SHEET METALS (03 Hours)			
	Introduction, Geometry of cruciform specimen, method of strain measurement, Biaxial stress strain curve, measurement of yield locus, factors affecting the maximum equivalent plastic strain applicable to gauge area, case studies.			
	SHEET DEFORMATION PROCESSES (PLANE STRESS) (09 Hours)			
	Deformation in uniaxial tension, stress and strain ratios, theory of yielding in plain stress condition - Maximum shear stress, Hydrostatic stress, Tresca yield condition, Von Mises yield condition, Levy–Mises flow rule, Relation between the stress and strain ratios, Work of plastic deformation, Work hardening hypothesis, Effective stress and strain functions, Concept of Formability, formability limits and formability diagram. Factors affecting the forming limit curve.			

DoME

LOAD INSTABILITY AND TEARING	(10 Hours)		
Uniaxial tension of a perfect strip, Tension of an imperfect strip, Tensile stretching continuous sheet - condition for local necking in uniaxial and biaxi			
ANALYSIS OF STAMPING AND DEEP DRAWING PROCESS	(07 Hours)		
Two-dimensional model of stamping, stretch and draw ratios in a stamping, three stamping model, limiting drawing ratio and anisotropy, effect of strain-hardeni on drawing stress, redrawing and reverse redrawing of a cylindrical cup, wall in drawn cups, estimation of drawing force.	ng and friction		
ANALYSIS OF BENDING PROCESS	(05 Hours)		
Strain distribution in bending, bending without tension, bending of sheet in v-die, determination of work load, stock length and punch angle, springback and reverse bending, bending line construction.			
determination of work load, stock length and punch angle, springback and re			
determination of work load, stock length and punch angle, springback and re			
determination of work load, stock length and punch angle, springback and rebending line construction.	verse bending,		
determination of work load, stock length and punch angle, springback and rebending line construction. ANALYSIS OF PUNCHING AND BLANKING PROCESS Mode of metal deformation and failure, deformation model and frac	verse bending,		
determination of work load, stock length and punch angle, springback and rebending line construction. ANALYSIS OF PUNCHING AND BLANKING PROCESS Mode of metal deformation and failure, deformation model and fracted determination of working force.	(03 Hours) cture analysis, (05 Hours) e section, Tube		

3.	Books Recommended
1	R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, London, 2004
2	S.J. Hu, Marciniak Z., J.L. Duncan, Mechanics of Sheet Metal Forming, Butterworth- Heinemann, 2002
3	G. Schuler, Metal forming handbook, Springer Verlag Berlin, Heidelberg, 1998
4	S.P. Timoshenko, Theory of Elasticity, McGraw Hill, 2017
5	A. Ghosh and A. K. Malik, Manufacturing Science, East-West Press Pvt Ltd, 2010

B.Tech. IV (DoME) Semester – 7 PRODUCTION AND OPERATIONS MANAGEMENT	Scheme	L	Т	Р	Credit
(ELECTIVE-IV)		3	0	0	03
ME465		1 223			

1 At th	e end of the course, students will be able to
CO1	Explain, how the operations and processes have strategic importance and can provide a competitive advantage.
CO2	Evaluate and rank capacity and constraint management by solving the problems.
соз	Choose and rank aggregate plan and schedule production by solving the problems.
CO4	Develop Material Requirement Planning (MRP) structure.
CO5	Apply various lot sizing techniques to the dependent inventory models.
CO6	Describe the concepts of lean, agile and quick response manufacturing and compare them.

2.	Syllabus					
	OPERATIONS STRATEGY AND PROCESS STRATEGY	(07 Hours)				
	Operations of goods and services, Developing Mission and strategy, Issues of operations strategy, Strategy development and implementation, Strategic planning, Core competency, Outsourcing, Design and selection of goods and services, Product development Product design issue, Process strategy, process analysis and design.					
	CAPACITY AND CONSTRAINT MANAGEMENT	(07 Hours)				
	Capacity, Bottleneck analysis and theory, Break -Even Analysis (Single & Multiproduct), Risk Reduction, Capacity Decisions using Expected monetary value, investment analysis.					
	AGGREGATE PLANNING	(08 Hours)				
	Planning Process, Nature of Planning, Strategies, methods, Aggregate planning in services.					
	MATERIAL REQUIREMENT PLANNING AND ERP	(09 Hours)				
	Dependent Demand, Dependent inventory model, Material Requirement Planning (MRP) structures, Management, Lot sizing techniques, Extension of MRP, MRP in-services.					

SHORT TERM SCHEDULING	(09 Hours)
Issues, Scheduling process, Focused facilities, Loading jobs, Se scheduling, Service scheduling.	quencing jobs, Finite capacit
LEAN, AGILE AND QUICK RESPONSE MANUFACTURING	(05 Hours)
Lean and Just-In-Time, Total Quality Management (TQM), Toy organization, Lean in Services, Agility, Dimensions of agility, Q Manufacturing excellence, Total productive maintenance (TPM)	uick response manufacturin

3.	Books Recommended
1	J. Heizer, B. Render, C. Munson and A. Sachan, Operations Management, 12 th Edition, Pearson Education, 2017
2	Everett E. Adam, R. J. Ebert, Production and Operations Management: Concepts, Models and Behaviour, 9 th Revised Edition, Prentice Hall, 1993
3	E. S. Buffa and R. K. Sarin, Modern Production/ Operations Management, 8 th Edition, John Wiley & Sons, 2007
4	S. Eilon, Elements of Production Planning and Control, 3 rd Edition, Universal Publishing Corporation, 2022
5	L. J. Krajewski and L. P. Ritzman, Operations Management: Strategy and Analysis, 6 th Edition, Pearson Education, 2022

B.Tech. IV (DoME) Semester – 7 AUTOMATION AND PROCESS CONTROL FOR SMART	Scheme	L	Т	Р	Credit
MANUFACTURING (ELECTIVE-IV) ME467		3	0	0	03

At th	e end of the course, students will be able to
CO1	Explain the concepts of automation and IoT for manufacturing process control.
CO2	Apply the knowledge of automation for improvement of existing mechanical engineering systems.
CO3	Distinguish the key elements of the automation systems such as sensors, actuation system, etc.
CO4	Demonstrate programming control strategies and selection controller for manufacturing process control.
CO5	Analyze the key drivers of a smart manufacturing system, internet of things for factory automation.
CO6	Create a pathway for smart factory development.

2.	Syllabus					
	Automation	(15 Hours)				
	Introduction to automation of different manufacturing processes. Levels of automation, types of automation system. Automation principles and strategies: the USA principle, strategies for automation and process improvement, and automation migration strategy. Manufacturing operations; Production facilities; Automatic control in manufacturing: Introduction to transducing, actuating, signal conditioning, data conversion devices, microprocessor-based controllers and applications, process control and controllers, machine vision, programmable logic controllers-system interfacing, programming, and applications; numerical control of machine tools, control of robotic manipulators, supervisory control and data acquisition (SCADA), inspection for quality control.					
	SENSING AND MOTION CONTROL SYSTEMS	(10 Hours)				
	Brief overview of measurement systems, classification, characteristics and calibration of different sensors. Sensing of displacement, position, speed, acceleration, strain gauge, force, torque, pressure, flow, level, light, humidity, temperature, pH. Smart sensors. Principles and structures of modern micro sensors. Selection and mechanism of actuating devices: switching devices, solenoid-type devices, actuating cylinders and process control valves, motors and					

	drives, piezoelectric actuators. Basics of motion control, Mechanically and electronically coordinated motion, component of motion control system.
	SMART MANUFACTURING TECHNOLOGIES-I (10 Hours)
	Introduction to smart manufacturing, key drivers, role of 3D Printing technologies in smart
	manufacturing, smart materials in manufacturing, 4D Printing, artificial intelligence in manufacturing.
	SMART MANUFACTURING TECHNOLOGIES-II (10 Hours)
	The concept of Industry 4.0/5.0 and smart factories, components. Introduction to the concept of dark factories, big data analysis, internet of things (IoT) for factory automation.
-	(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	M. P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4 th Edition, Pearson, 2015
2	C D Johnson, Process Control Instrumentation Technology, 8 th Edition, Prentice Hall India, 2006
3	Beno Benhabib, Manufacturing: Design, Production, Automation, and Integration, Marcel Dekker, Inc., USA, 2003
4	D. Shetty, A. R. Kolk, Mechatronic System Design, 2 nd Edition, PWS Publicity Boston, 2010
5	D. Serpanos, M. Wolf, Internet-of-Things (IoT) Systems: Architectures, Algorithms, Methodologies, Springer International Publishing, 2018

B.Tech. IV (DoME) Semester – 7 THEORY OF ELASTICITY (ELECTIVE-V)	Scheme	L	Т	Р	Credit
ME469		3	0	0	03

(T)	e end of the course, students will be able to
CO1	Utilize principles of elasticity theory to estimate stresses and strains in isotropic and non-isotropic materials using a tentorial approach.
CO2	Formulate and solve boundary value problems in solid continua using stress and displacement based solution Strategies.
CO3	Apply Airy stress function in rectangular and polar co-ordinates.
CO4	Solve specific three-dimensional problems like torsion.
CO5	Assume bending of non-circular prismatic bar and membrane analogy.
CO6	Analyse simple plate bending problems.

2.	Syllabus	
	Analysis of Stress and Strain: Stress at a point; stress tensor; stress transformations; principal stresses; octahedral stress; geometrical representation of stress at a point; equations of equilibrium. Infinitesimal affine transformation for deformation; strain tensor; principal strains; strain-displacement relations for finite and infinitesimal strains; compatibility conditions. Constitutive Equations: General theory; generalized Hooke's law for anisotropic and isotropic materials.	(15 Hours)
	Equations of Elasticity: Common equations of elasticity theory like Mitchel-Beltrami and Navier equations, formulation of the general elasticity problem; boundary conditions.	(15 Hours)
	Solution of Some Special Boundary Value Problems: Simplifications; two-dimensional problems in rectangular and polar coordinates; Airy's stress function; a few problems like stress concentration around a circular hole and Boussinesq problem. A few representative three-dimensional problems; torsion and bending of non – circular prismatic bars (Saint-Venant's solution); membrane analogy, Simple Plate bending.	(15 Hours)
	(Total Contact Tim	e: = 45 Hours

3.	Books Recommended
1	L. S. Srinath, Advance Mechanics of Solids, McGraw Hill Education, 3 rd Edition, 2009.
2	A. C. Ugural and S. K. Fenster, Advanced Mechanics of Materials and Applied Elasticity, Pearson Education, 5 th Edition 2011.
3	H. J. Helena, Theory of Elasticity and Plasticity, PHI Learning Pvt. Ltd., 2017.
4	S. Singh, Theory of Elasticity, Khanna Publishers, 2015.
5	S. Timoshenko, Theory of Elasticity, McGraw Hill Education, 3rd Edition, 2017.

B.Tech. IV (DoME) Semester – 7 ROTOR DYNAMICS(ELECTIVE-V)	Scheme	L	т	Р	Credit
ME471		3	0	0	03

	e end of the course, students will be able to
CO1	Understand the concept of simple rotor systems.
CO2	Conceptualize the rotordynamic design of bearings and seals.
соз	Formulate the concept of transverse vibrations in rotor systems.
CO4	Evaluate the instability in rotor systems.
CO5	Analyze the transfer matrix method to rotor dynamic systems and understand the vibration measurements.

Syllabus	
History of Rotor Systems and Recent Trends.	(15 Hours)
Transverse Vibrations of Simple Rotor Systems: Single-DOF Undamped Rotor Model, Jeffcott Rotor Model, Jeffcott Rotor Model with an Offset Disc, Effect of Cross-Coupling Stiffness on Critical Speeds, Gyroscopic Moments in Rotating Systems, Synchronous Motion of Rotors.	
Transverse Vibrations of Simple Rotor-Bearing-Foundation Systems: Symmetrical Long Rigid Shaft on Flexible Anisotropic Undamped Bearings, Symmetrical Long Rigid Shaft on Anisotropic Bearings, A Symmetrical Flexible Shaft on Anisotropic Bearings.	13
Rotordynamic Parameters of Bearings and Seals: Hydrodynamic Fluid- Lubricated Journal Bearings, Rolling Element Bearings, Dynamic Seals.	(15 Hours)
Torsional Vibrations of Rotor Systems by the Direct Analytical and Transfer Matrix Methods: Torsional Rotor System with a Single Disc, Two-Disc Torsional Rotor System, Direct Approach and Transfer Matrix Methods.	

Vibration-Based Condition Monitoring in Rotating Machinery: Unbalances in Rotor Systems, Misalignment, Rub, Slackness of Rotor Elements, Rolling Bearing Defects, Faults in Gears.	
(Total Contact Tim	e: = 45 Hours)

3.	Books Recommended
1	J. Vance, F. Zeidan, and B. T. Murphy, Machinery Vibration and Rotor Dynamics, John Wiley & Sons, 2010.
2	M. Goodwin, The Dynamics of Rotor Bearing Systems, Springer-Netherlands, 1989.
3	G. Genta, Dynamics of Rotating Systems, Springer, 2005.
4	M. I. Friswell, J. E. T. Penny, S. D. Garvey and A. W. Lees, Dynamics of Rotating Machines, Cambridge University Press, 2010.
5	J. S. Rao, Rotor Dynamics, 3 rd Edition, New Age International, 1996.

B.Tech. IV (DoME) Semester – 7 MACHINE TOOL DESIGN (ELECTIVE-V)	Scheme	L	Т	P	Credit
ME473		3	0	0	03

1. At the	Course Outcomes (COs): end of the course, students will be able to
CO1	Outline the general requirements of machine tools.
CO2	Design mechanical and hydraulic transmission elements.
соз	Analyze the kinematics of machine elements
CO4	Explain machine tool control systems.
CO5	Choose the column, table and guide ways of machine tools.
CO6	Develop and develop control systems for machine tools

2.	Syllabus	
	INTRODUCTION	(05 Hours)
	General requirements to machine tools, Machine tool design rec Classification of motions to shape surface, Machine tool drives for rect Periodic motion, reversing motion etc.	
	KINEMATICS OF MACHINE TOOLS	(05 Hours)
	Kinematics or gearing diagram of Lathe, Drilling Machine, Milling Machine et drive, principles specification of machine tool	c. machine too
	DESIGN OF KINEMATICS	(05 Hours)
	DESIGN OF KINEMATICS Methods to determine transmission ratios for drives, Mechanical transmission and its elements	1
	Methods to determine transmission ratios for drives, Mechanical transm	1
	Methods to determine transmission ratios for drives, Mechanical transmission and its elements	(05 Hours)

Main requirement, Materials and details of spindle design types of bearings and their selections, Bearing Materials.	, Spindle bearings, bearings,
COLUMNS, TABLES AND WAYS	(08 Hours)
Materials, typical constructions and design, basic design proc design of columns, function and types of guide ways, design	
ways	
MACHINE TOOLS CONTROL SYSTEMS	(09 Hours)

3.	Books Recommended	
1	N. K. Mehta, Machine Tool Design, 3re Edition, Tata McGraw Hill, 2017	
2	S. K. Basu and D. K. Pal, Design of Machine Tools, 5 th Edition, 0x ford and IBH, 2005	
3	N. Achertan, Machine Tool Design, University Press of the Pacific, 2000	
4	F. Koenigsberger, Design Principles of Metal Cutting Machine Tools, Pergamon Press, 2013	
5	G. C. Sen and A. Bhattacharyya, Principles of Machine Tools, 2nd Edition, New Central Book Agency,2009	

B.Tech. IV (DoME) Semester – 7 RADIATION HEAT TRANSFER (ELECTIVE-V)	Scheme	L	Т	Р	Credit
ME475		3	0	0	03

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Describes the basic laws of radiation heat transfer
CO2	Calculate radiation heat transfer for black and gray body surfaces
CO3	Develop solutions for surface-to-surface radiation heat transfer with and without participating media
CO4	Analyze problems involving gas radiation heat transfer
CO5	Estimate the radiation parameters using inverse method
CO6	Investigate radiation heat transfer in biological tissue and atmosphere

2.	Syllabus					
	RADIATION	(02 hours)				
	Importance of thermal radiation, Nature of Radiation.					
	BLACKBODY AND ITS CHARACTERISTICS	(05 hours)				
	Key attributes of a black body, Solid angle, Spectral or Monochromatic radia Spectral hemispherical emissive power, Relationship between intensity and Candidate blackbody distribution function, Planck's blackbody radiation distrib Wein's displacement law, universal blackbody function, Problems.	temperature,				
	RADIATIVE PROPERTIES OF NON-BLACK SURFACES	(05 hours)				
	Why do we need a gray body model, Spectral directional emissivity, Hemispherical spectral emissivity, Directional total emissivity, Hemispherical total emissivity, Kirchoff law Absorptivity, Spectral directional absorptivity, Directional total absorptivity, Hemispherical total absorptivity, Reflectivity, Transmissivity, Spectral transmissivity, Optical pyrometry Problems					
	RADIATIVE HEAT TRANSFER BETWEEN SURFACES	(07 hours)				
	Enclosure theory, View factor, View factor algebra, View factors from direct integration, Enclosure analysis – Gray surface, Enclosure analysis – Non gray surface, Problems					

RADIATION IN PARTICIPATING MEDIA	(12 hours)
Principal difficulties in studying gas radiation, Important properties for study Equation of transfer or Radiative transfer equation, Solution to the Requation, Concept of mean beam length, Enclosure analysis in the absorbing/emitting gas, Emissivity and absorptivity of gas mixture, Radiation Conduction and Convection, Problems.	adiative transfer ne presence o
INVERSE PROBLEMS IN RADIATION	(07 hours)
Introduction to inverse problems, Parameter estimation by least square Problems.	s minimizations
SPECIAL TOPICS ON RADIATION HEAT TRANSFER	(07 hours)
Atmospheric and solar radiation, Radiation Transfer in Tissue, Numerical mod Radiative Transfer equation (RTE)	deling of
/= . lo =	ime: = 45 Hours)

3.	Books Recommended
1	R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, Taylor & Francis, 2015.
2	M.F. Modest, Radiative Heat Transfer, McGraw Hill, 2013
3	C. Balaji, Essentials of Radiation Heat Transfer. John Wiley & Sons, 2014
4	M.N. Ozisik, Inverse Heat Transfer: Fundamentals and Applications. CRC Press, 2000
5	F.P. Incropera, A.S. Lavine, T.L. Bergman, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer. John Wiley & Sons Inc., 2011

B.Tech. IV (DoME) Semester – 7 ADVANCED REFRIGERATION AND AIR-CONDITIONING	Scheme	L	Т	Р	Credit
SYSTEMS (ELECTIVE-V)		3	0	0	03
ME477		1000		520	1000000

1 At th	e end of the course, students will be able to
CO1	Outline the properties of refrigeration systems.
CO2	Evaluate the performance of compound vapour compression refrigeration systems for various applications
CO3	Describe vapour absorption system for large cooling load application and evaluate its performance
CO4	Explain working principles of non-conventional refrigeration systems and evaluate the performance of steam jet refrigeration system.
CO5	Compute cooling/heating loads for designing air conditioning systems for residential and commercial building
CO6	Design the air duct systems for large commercial buildings

2.	Syllabus				
	VAPOUR COMPRESSION REFRIGERATION SYSTEM	(06 hours)			
	Refrigerants – properties, applications, selection, mixed refrigerants, retrofit study, standard rating cycle for domestic refrigerator, methods of defrosting. refrigeration system components: compressors, condensers, expansion devices, evaporators, Next generation refrigerants.				
	COMPOUND VAPOUR COMPRESSION REFRIGERATION SYSTEMS	(08 hours)			
	Multi stage compression with water intercooler, liquid sub cooler, flash of intercoolers and multiple expansion valves, multi evaporator systems, cascad system	shambar flash			
	intercoolers and multiple expansion valves, multi evaporator systems, casc				
	intercoolers and multiple expansion valves, multi evaporator systems, casc				
	intercoolers and multiple expansion valves, multi evaporator systems, casc system	(05 hours)			

Steam jet refrigeration system, Performance analysis of steam jet refrige thermo electric refrigeration system, vortex tube refrigeration, pulse tube vapour adsorption refrigeration system	
AIR CONDITIONING	(12 hours)
Review of air conditioning processes, summer and winter load calculations external heat gains, cooling coils, bypass factor, effective sensible heat consideration for cooling coils, high latent heat load, design of evaporative comfort air conditioning, thermodynamics of human body, comfort charconditioning, split air-conditioning, package air-conditioning	factor, design cooling system,
AIR HANDLING UNIT	(08 hours)
Central air conditioning system, components of Air handling unit, principle distributions, fluid flow and pressure losses, Duct design: Principle of duct design diameter of ducts, duct materials, friction chart and its use, methods of duct design.	ign, equivalent
(Total Contact Tin	ne: = 45 Hours)

3.	Books Recommended
1	W. F. Stoeaker, Refrigeration and Air Conditioning, McGraw Hill, 2004
2	R.J Dossat, Principles of Refrigeration, John Wiley & Sons, 2000
3	C.P. Arora, Refrigeration and Air Conditioning, Tata McGraw Hill, 2008
4	S.C. Arora and S. Domkundwar, A Course in Refrigeration and Air Conditioning, Dhanpat Rai & Sons, 2018
5	P. Manohar, Refrigeration and Air Conditioning, New Age International, 2011

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 GAS DYNAMICS (ELECTIVE-V)	Scheme	L	Т	Р	Credit
ME479	=	3	0	0	03

025	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Predict the effect of compressibility and flow behaviour in the field of gas dynamics.
CO2	Describe the various possible 1-D duct mechanisms and develop duct flow equations.
CO3	Solve 1-D design problems based on Isentropic, Fanno and Rayleigh flow
CO4	Evaluate the different possible conditions for flow without chocking in 1-D duct with variable area, friction and heat transfer.
CO5	Estimate the position and effect of shock within the 1-D duct.
CO6	Explore the shock phenomenon and learn to use shock polar diagram for 2-D flows

2.	Syllabus	
	INTRODUCTION	(05 hours)
	Thermodynamics of compressible flow, Perfect Gas, General effect of compressibility, Wave Motion, Propagation of Infinitesimal waves, Mach number, Pressure disturbances in a Compressible flow, Stagnation condition.	
	1-DIMENSIONAL, STEADY, ISENTROPIC FLOW IN VARIABLE AREA PASSAGES	(10 hours)
	Introduction, governing equations, Effect of area change in the fluid properties, Equations for Isentropic flow, Maximum mass flow rate, Flow through nozzle & diffuser, Numerical.	
	FLOW IN CONSTANT AREA DUCT WITH FRICTION	(06 hours)
	Introduction, governing equations, Fanno flow equations, Variation of Mach number with duct length, Numerical.	
	FLOW IN CONSTANT AREA DUCT WITH HEAT TRANSFER	(06 hours)
	Introduction, governing equations, Slope of Rayleigh line on p-v diagram, Fundamental equation of Rayleigh line, Maximum heat transfer, Numerical	

DoME

Department of Mechanical Engineering

B.Tech. -IV, Mechanical Engineering (As per NEP)

OBLIQUE SHOCK	(08 hours
	rations, Rankine–Huguenot Relations, Prandtle Equations, θ - β -M a Hodograph method for the solution of 2- D flows.

Books Recommended
S. M. Yahya, Fundamental of Compressible Flow with Aircraft & Rocket Propulsion, New Age International Ltd., 2016
E. Rathakrishnan, Gas Dynamics, PHI Learning Pvt. Ltd., 2017
A. H. Shapiro, Compressible Fluid Flow, Ronald Press Company, 1953
M. J Zucrow and J.D. Hoffman, Gas Dynamics, John Wiley & Sons, 1976
R. D. Zucker and Oscar Biblarz, Fundamental of Gas Dynamics, Wiley, 2019

B.Tech. IV (DoME) Semester – 7 FOUNDRY TECHNOLOGY (ELECTIVE-V)	Scheme	L	Т	Р	Credit
ME481		3	0	0	03

10.4	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Demonstrate science of liquid metal solidifying metal and related phenomenon.
CO2	Explain about flow and heat transfer of molten metal and correlate the effects of the same on resultant structure-properties of cast metals.
CO3	Describe the design of patterns and mold parts and explain procedures of testing of core and mold materials.
CO4	Solve the size of gating system elements and pouring time for sand castings.
CO5	Calculate the size and determine the shape and location of risers and describe effects of feeding aids for achieving directional solidification.
CO6	Describe and compare procedures of casting various ferrous and non-ferrous metals and alloys.

2.	Syllabus			
,	SCIENCE OF SOLIDIFYING METAL	(08 hours)		
	Metal flow analysis - pressure, velocity and losses, turbulence & fluidity of molten metals, gas evolution and venting, heat flow during solidification – thermal gradient & cooling rate, conduction, Chvorinov's rule for solidification time, shrinkage, cooling stresses, distortion, effect on microstructure of metals.			
	TECHNOLOGY OF TOOLINGS	(10 hours)		
	Design of Tools for metal casting – intermediate tools (pattern), final tools(more orientation and mould parting; testing of mould materials, positioning of undecore and core print design, core strength, No-bake cores, core heat transfer an pattern allowances, multi-cavity mould layout. Pattern & mould material for casting and shell moulding processes.	rcuts, types of d gas transfer,		
	DESIGN OF RISERS	(10 hours)		
	Types of risers – top and side risers, Open and blind risers; requirements, location, capacity & efficiency, Design of risers – riser size, riser shape, modulus method, Caine's curve method, shape factor method, Neck size; Directional solidification, Feeding aids – external and internal			

DESIGN OF GATING SYSTEM	(10 hours)
Elements of gating system, Calculation of ideal filling time, filling rate of fer ferrous metals, size & position of choke, gating ratio, pressurized and non-pressystem, design of down sprue, sprue well, runner, gate, selection of gate.	ssurized gating
junction, filtration of molten metal, evaluation of gating design.	s, gate dasting
	(07 hours)

3.	Books Recommended
1	B. Ravi, Metal Casting: Computer Aided Design and Analysis, PHI Learning Pvt. Ltd., 2005
2	R.W. Heine, C. R. Loper and P.C. Rosenthal, Principles of Metal Casting, Tata McGraw-Hill, 2017
3	P. L. Jain, Principles of Foundry Technology, TMH Publications, 2014
4	P. Beeley, Foundry Technology, Elsevier (reprint by: Butterworth-Heinemann), 2001
5	A. K. Chakrabarti, Casting Technology and Cast Alloys, PHI Ltd., 2005.

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 MANUFACTURING OF COMPOSITES (ELECTIVE-V)	Scheme	L	Т	P	Credit
ME483		3	0	0	03

-	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Classify composite materials and demonstrate fundamentals of composite materials.
CO2	Analyze, evaluate, and select a manufacturing process appropriate for a given part within various constraints.
CO3	Demonstrate basics and progressive techniques of composites manufacturing.
CO4	Compare thermoset and thermoplastic based composites manufacturing processes.
CO5	Explain the various issues associated with cost and producibility.
CO6	Describe including design for manufacturing and maintenance the characterizing dispositioning, and rework/repair of defects.

2.	Syllabus	
	Introduction	(10 hours)
	Introduction to Composites; Function of the Matrix and Reinforcement is	n Composites;
	Polymer Matrix and Nano Composites; Matrices: Thermosets and Therm	oplastic; Fiber
	Reinforcement. Properties and testing composites; Properties of Composite	es; Composites
	testing; Composites design: Laminate theory, Rule of mixtures, symmetry and	balance.
	Thermoset composites manufacturing	(09 hours)
	Thermoset composites manufacturing processes; Material selection process	control; Design
	for manufacturing. Thermoset composite manufacturing: Lay-up processes, Sp	rav up process:
	Fiber placement process; Resin transfer moulding. Fiber manufacturing proces	
	Fiber placement process; Resin transfer moulding. Fiber manufacturing proces Thermoplastic composite manufacturing	
		(10 hours)
	Thermoplastic composite manufacturing	(10 hours) manufacturing:
	Thermoplastic composite manufacturing Thermoplastic composite manufacturing processes; Thermoplastic composite in	(10 hours) manufacturing:
	Thermoplastic composite manufacturing Thermoplastic composite manufacturing processes; Thermoplastic composite of Vacuum assisted resin transfer moulding; Compression moulding process; Fila	(10 hours) manufacturing:

डी.ओ.एम.

DoME

	Metal and ceramic matrix composites; Metal matrix and reinforcement; processes for metal matrix composites: dispersion hardened and particle composites and infiltration method.	
	Ceramic matrix composites manufacturing	(08 hours)
1	Prevention of Damage, repair of Composites and selection of processes; composites manufacturing: Hot isostatic processing; Non-destructive testing Manufacturing process selection: Cost, performance, size shape, rate of produprocess selection. Dispositioning.	of composite
	(Total Contact Ti	me: = 45 Hour

3.	Books Recommended
1	K. K. Chawla, Composite Materials - Science and Engineering, Springer, 2001
2	P. K. Mallick, Fiber Reinforced Composites: Materials, Manufacturing and Design 3 rd Edition, Maneel Dekker Inc, 2019.
3	B.T. Astrom, Manufacturing of Polymer Composites, Chapman and Hall, 2018
4	A.C. Loos, Manufacturing of Polymer Composites, Vol. 6, American Society for Composites, 2013.
5	F.C. Campbell, Manufacturing Processes for Advanced Composites, Elsevier, 2004.

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 COMPUTER INTEGRATED MANUFACTURING	Scheme	L	т	Р	Credit
(ELECTIVE-V)		3	0	0	03
ME485		8558			

	e end of the course, students will be able to
CO1	Describe different types of Automation and CIM.
CO2	Develop the CNC Program for the given geometry for Drilling, Milling and Turning machines.
соз	Create the part program using APT.
CO4	Analyze the production flow based on part classification, identification and coding.
CO5	Evaluate the different types of flexibilities in manufacturing.
CO6	Explain and evaluate types and steps of computer aided process planning.

2.	Syllabus	
	INTRODUCTION TO CIM	(04 hours)
	Introduction to automation, Types of automation, Automation principles at Definition of CIM, CIM wheel, Evolution of CIM, Benefits of CIM, CIM hardware Nature and role of the elements of CIM system, Development of CIM.	2000 100
	COMPUTER AIDED MANUFACTURING	(18 hours)
	Components of NC/CNC system, Specification of CNC system, Classification of Constructional details of CNC machines, Axis designation, CNC control programming terms, Programming formats, Preparatory command, Miscellane Machine zero, work zero and tool zero, Work offsets, Tool length offset and so Cutter radius offset, Machine zero return, Part programming for milling - line interpolation, subprogram, fixed/canned cycles, mirrors commands, machin pattern, polar coordinates, round and rectangular pocket machining and cycles mirror, Part programming for lathe - lathe cycles, with and without tool nose repetitive fixed cycle.	loops. Basic cous functions, etup methods, ar and circular ing large hole s, subroutines,
	PART PROGRAMMING WITH AUTOMATICALLY PROGRAMMED TOOLS (APT)	(05 hours)
	Computer aided part programming, APT: Geometry, motions and auxiliary cocycle commands, programming for geometry and drill cycle and hole pattern	ommands, dril

DoME

Institute of

GROUP TECHNOLOGY	(08 hours)
Definition, implementation considerations, benefits and applications, search method, production flow analysis, Parts classification and manufacturing attributes, Concept of composite component, Rank orderell formation, Cell group tooling, Design rationalization, possibilities CAD/CAM.	coding, Design and er clustering, machine
FLEXIBLE MANUFACTURING SYSTEM	(07 hours)
Introduction, General Considerations for FMS, types of FMS, Flexibilities Computer control in FMS, Automated material handling systems, AGVs, retrieval systems, Manufacturing cells, cellular v/s flexible manufacturing	Automatic storage an
COMPUTER AIDED PROCESS PLANNING	(03 hours)
COMIT OTEN ANDED THE CESS TE MINIMO	38
Introduction to CAPP, Route card, Manual and computer aided proces types.	s planning, steps, an

3.	Books Recommended
1	Krar, S.F. and Gill, A., CNC: Technology and Programming, McGraw-Hill, 1990
2	Groover, M.P., Automation, production systems, and computer-integrated manufacturing. Pearson Education India, 5 th Edition, 2019
3	P. Radhakrishnan, S. Subramanyan, and V. Raju, CAD/CAM/CIM, New Age International Publishers, 3 rd edition, 2011
4	P. N. Rao, CAD/CAM Principles and Applications, Tata McGraw Hill, 2 nd Edition, 2006
5	S. Kant Vajpayee, Principles of Computer Integrated Manufacturing, PHI, New Delhi, 1 st Edition, 1998

B.Tech. IV (DoME) Semester – 7 DESIGN OF PRESSURE VESSELS (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME487		3	0	0	03

1 At the	e end of the course, students will be able to	
CO1	Describe the factors influencing the design of pressure vessels.	
CO2	Calculate the different stresses and strains in a pressure vessel.	
CO3	Design the head and shell for the pressure vessel	
CO4	Estimate the stresses in the nozzle and its reinforcement	
CO5	Analyze the critical part of pressure vessels.	
CO6	Evaluate the buckling pressure and type of failure	

2.	Syllabus	
	INTRODUCTION	(04 Hours)
	Factors influencing the design of vessels, Classification of pressure vessels, Mat Loads, and types of failures	erial selection,
	STRESSES IN PRESSURE VESSELS	(13 Hours)
	Stresses in circular ring, Cylinder and sphere, Membrane stresses in vessels pressure, Thick cylinders, Shrink-fit stresses, Autofrettage of thick cylinders, Th	
	DESIGN OF HEADS	(05 Hours)
	Introduction, Design for hemispherical head, Ellipsoidal head, torispherical head, Head, Flat heads and covers	nd, Conical
	DESIGN OF NOZZLES AND OPENINGS	(05 Hours)
	Introduction, Stress concentration about a circular hole, Cylindrical and sphe circular hole under internal pressure, Reinforcement of openings, Nozzles in pr	
	DISCONTINUITY STRESSES IN PRESSURE VESSEL	(11 Hours)
	Introduction, Beam on elastic foundation, infinitely long beam, Semi-Infinite be vessel under axially symmetrical loading, Extent and significance of load de pressure vessels, Stresses built in a bimetallic joint, Deformation and stresses in	formations on

BUCKLING OF VESSELS	(07 Hours)
Buckling phenomenon, Elastic Buckling of circular ring and cylinders Collapse of thick-walled cylinders or tubes under external pressu Elastic buckling of cylinders, Buckling under combined External pres	re, Effect of supports or
(Total C	Contact Time: = 45 Hours)

3.	Books Recommended
1	Subhash Reddy Gaddam, Design of Pressure Vessels, CRC Press; 1st edition (17 December 2020)
2	J.F. Harvey, Theory and Design of Pressure Vessels, 1st edition, CBS, India 2001
3	Henry M. Bednar, Pressure Vessel Design Handbook, Van Nostrand Reinhold Company, USA, 1 August 1981
4	Moss Demis R., Pressure Vessel Design Manual, Gulf Publishing Co., Houston, 1987
5	J Spence, A S Tooth, Pressure Vessel Design: Concepts and principles, CRC Press, 10 Sept 2012

B.Tech. IV (DoME) Semester – 7 THEORY OF PLATES AND SHELLS (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME489		3	0	0	03

1 At th	e end of the course, students will be able to
CO1	Understand the simple bending of plates and different boundary conditions for plates.
CO2	Apply Navier's method and Leavy's method of solution for rectangular plates.
CO3	Analyze circular plates subjected to different kinds of loads.
CO4	Calculate Eigen value for vibration analysis of rectangular plates.
CO5	Utilize approximate methods to solve the rectangular plate problems.
CO6	Design various types of circular cylindrical shells.

2.	Syllabus	
	Classical Plate Theory: Classical Plate Theory – Assumptions – Differential Equation – Boundary Conditions	(08 Hours)
	Plates of Various Shades: Navier's Method of Solution for Simply Supported Rectangular Plates – Leavy's Method of Solution for Rectangular Plates under Different Boundary Conditions. Governing Equation – Solution for Axisymmetric loading – Annular Plates – Plates of other shapes	(10 Hours)
	Eigen Value Analysis: Free Vibration Analysis of Rectangular Plates.	(08 Hours)
	Approximate Methods: Rayleigh – Ritz, Galerkin Methods– Finite Difference Method – Application to Rectangular Plates for Static, Free Vibration and Stability Analysis	(12 Hours)
	Shells: Basic Concepts of Shell Type of Structures – Membrane and Bending Theories for Circular Cylindrical Shells.	(07 Hours)
	(Total Contact Time	

3.	Books Recommended
1	A. C. Ugural, Plates and Shells Theory and Analysis, CRC Press, 4 th Edition, 2017.
2	R Szilard, Theories and Applications of Plate Analysis Classical, Numerical and Engineering Methods, Wiley, 2004.
3	J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, 2007.
4	K. Chandrashekhara, Theory of Plates, University Press, Hyderabad, 2001.
5	S. S. Bhavikatti, Theory of Plates and Shells, New Age International, 2015.

B.Tech. IV (DoME) Semester – 7 CONTINUUM MECHANICS (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME491		3	0	0	03

-	e end of the course, students will be able to
CO1	Utilize basic tensorial calculus required for understanding the continuum behaviour of matters.
CO2	Illustrate the kinematics of continuum body deformation.
соз	Analyse the configuration dependent stress and strain measures.
CO4	Apply the knowledge about the fundamental balance principles of continuum objects.
CO5	Formulate a good foundation in constitutive modelling of solids.
CO6	Compare yield criteria and rheological models.

2.	Syllabus		
	Tensor Algebra: Scalar, Vector, second and higher order Tensors, Eigen values & vectors, Transformation of Tensors, Tensor valued functions, gradient operators and Integral theorems.	(15 Hours)	
	Kinematics: References and deformations configurations, Mapping and deformation gradients, material and spatial representations, Nanson's formula, Strain measures, Rotation & stretch tensors, rate of deformation.		
	Kinetics: Concept of stress, Cauchy's stress theorem, first and second Piola-Kirchoff's & Cauchy's stress tensors, Normal and shear stress, Extremal stress values, stress states.	(20 Hours)	
	Balance Principles: Mass conservation, Reynold's transport theorem, Momentum and energy balances in references and current configuration, Weak and strong forms of balance equation, Continuum thermodynamics, Clausius-Duhem inequality, Frame dependent and independent quantities, Objective rates.		
	Constitutive Modelling: Fluid and solid constitutive equations, generalized Hooke's law, material symmetry, visco elasticity, metal plasticity: Yield criteria, Flow rule, Hardening rule, loading & unloading conditions, multiplicative strain decomposition, rheological models.	(10 Hours)	
	(Total Contact Time: = 45 H		

3.	Books Recommended				
1	C. S. Jog, Continuum Mechanics: Volume 1: Foundations and Applications of Mechanics, Cambridge University Press, 2015.				
2	J. W. Rudnicki, Fundamentals of Continuum Mechanics, Wiley, 2015. W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum Mechanics, Butterwort Heinemann, 4 th Edition, 2015.				
3					
4	J. H. Heinbockel, Introduction to Tensor Calculus and Continuum Mechanics, Trafford Publishing, 2001.				
5	A. F. Bower, Applied Mechanics of Solids, CRC Press, 2010.				

B.Tech. IV (DoME) Semester – 7 TWO PHASE FLOW (ELECTIVE-VI)	Scheme	L	т	Р	Credit
ME493		3	0	0	03

Marine Marin	. Course Outcomes (COs): e end of the course, students will be able to	
CO1	Identify two-phase flow with and without phase change.	
CO2	Demonstrate the flow regimes of gas-liquid and gas-solid two-phase flow.	
CO3	Predict void fraction and pressure drop for gas-liquid two-phase flow.	
CO4	Estimate void fraction and pressure drop for gas-solid two-phase flow.	
CO5	Solve commonly encountered two-phase flow with phase change.	
CO6	Assess modern two-phase flow measurement techniques and instruments.	

2.	Syllabus			
	INTRODUCTION	(06 hours)		
	Introduction, horizontal two-phase flow, lockhart and Martinelli procedu method, vertical two-phase flow, two-phase flow through inclined pipes.	re, flow factor		
	(06 hours)			
	flow regimes in , pressure drop			
	GAS-LIQUID FLUIDIZATION	(08 hours)		
	Simultaneous flow of liquids and gases, Gas-liquid particle process, gas operation, flow of gas-bubble formation, bubble growth gas holdup, gas mixing liquid mixing, flow of liquid mixing, gas liquid mass transfer. Circulation in both forced, effective pressure head in boiler tubes, variation of major parameters transient conditions, hydrodynamics stability of vapor-liquid system.	g liquid holdup, iler-natural and		
	GAS-SOLID FLUIDIZATION	(06 hours)		
	Introduction, dynamics of particles submerged in fluids, flow through packed be calculation of pressure drop in fixed bed, determination of minimum fluidi			

expanded bed, dilute phase, moving solid fluidization, elutriation in fluidization, pulsating columns, oscillating fluidized bed, Pneumatic transpot transport of solids in pipes.	
TWO PHASE FLOW WITH CHANGE OF PHASE	(8 hours)
Film wise condensation of pure vapors, drop wise condensation in place condensation in presence of non-condensable gas-pool boiling, boiling in force tubing.	
MEASUREMENT TECHNIQUES IN TWO-PHASE FLOW	(05 hours)
Pressure drop measurements during two phase flow through a pipe, measurement, detection of flow pattern.	void fraction
SPECIAL TOPICS ON TWO-PHASE FLOW	(06 hours)
Case study on applications, Numerical modeling on Euler-Euler, and Euler-Langrausing software.	ange approach
(Total Contact Tim	e: = 45 Hours)

Books Recommended				
S. K. Das, D. Chatterjee, Vapor Liquid Two Phase Flow and Phase Change, Springer, 2023				
P B Whalley, Boiling, Condensation and Gas-Liquid Flow. Oxford University Press, 1987				
A. J. Ghajar, Single- and Two-Phase Flow Pressure Drop and Heat Transfer, Springer, 2022				
M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, 2006				
C. Kleinstreuer, Two-Phase Flow: Theory and Applications, Taylor & Francis, 2003				

B.Tech. IV (DoME) Semester – 7 CRYOGENICS ENGINEERING (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME495		3	0	0	03

	e end of the course, students will be able to
	Choose suitable cryogen and material for development of cryogenic system for different
CO1	applications
CO2	Design and analyse gas liquefaction system and cryogenic refrigeration systems including cryocoolers
соз	Decide proper cryogenic insulating material and designing of cryogenic insulation.
CO4	Analyse and design gas separation systems using cryogenics.
CO5	Apply the concepts of cryogenic material and design vacuum systems for cryogenic application.
CO6	Select and design storage, handling, and transfer systems for cryogens.

2.	Syllabus	
	CRYOGENS, PROPERTIES OF CRYOGENS AND CRYOGENIC MATERIALS	(04 hours)
	Introduction to cryogenics, chronology of cryogenics, cryogens and their pro- effect, Rollin effect, second sound effect, ortho and Para hydrogen, proper materials.	
	LOW TEMPERATURE PRODUCTION	(04 hours)
	Low temperature production methods: Joule-Thomson effect, inversion expansion for ideal and real gases, isentropic expansion	temperature, J-T
	GAS LIQUEFACTION SYSTEMS	(08 hours)
	Can liquate sting systems the surred was rightly ideal and liquate sting systems	
	Gas liquefaction system: thermodynamically ideal gas liquefaction system system, figure of merit, Precooled Linde Hampson system, dual pressure system, Claude system, Collins system, liquid yield and work of liquefaction, Kapitza system, Cascade system	Linde Hampson

Cryocoolers: types of cryocoolers, open cycle, closed cycle cryocoolers, regener recuperative type cryocoolers, Stirling cryocooler, Gifford Mc Mohan cryocool cryocooler, Schmidt's analysis, phasor analysis		
GAS SEPARATION AND RECTIFICATION	(08 hours)	
Gas separation systems: types of gas separation systems, ideal gas separation gas separation work, figure of merit, distribution coefficient, phase equienthalpy composition diagram, rectification column		
CRYOGENICS INSULATION	(06 hours)	
Insulation at cryogenic temperature: mode of heat transfer effecting heat in leak and boil off, mass insulation, reflective insulation, vacuum insulation, combination of mass, reflective and vacuum insulation, multi-layer insulation		
INSTRUMENTATION, STORAGES AND VACUUM SYSTEM IN CRYOGENICS	(07 hours)	
Vacuum Technology for cryogenic applications, Cryogenics instrumentation sensors, pressure sensors, flow sensors, stain gauges, heat exchanges, Storage fluid: Dewar vessel, piping, storage and handling		
(Total Contact Tim	e: = 45 Hours)	

3.	Books Recommended	
1	Randall F. Barron, Cryogenics Systems, Oxford University Press, 1985	
2	Haselden, C., Cryogenics Fundamentals, Academic Press, 2001	
3	Timmerhaus F., Cryogenics Process Engineering, Plenum Press, 1996	
4	Pipko A., Fundamentals of Vacuum Engineering, Mir Publication, 1984	
5	Mikulin, Y., Theory and Design of Cryogenics System, Oxford Press, 2002	

B.Tech. IV (DoME) Semester – 7 DESIGN OF SOLAR THERMAL SYSTEMS (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME497		3	0	0	03

	Course Outcomes (COs): At the end of the course, students will be able to		
CO1	Calculate inclination angle of solar collectors		
CO2	Design solar water and air heater		
CO3	Develop solar concentrator for specific application		
CO4	Build solar powered desiccant air conditioning system		
CO5	Plan solar powered atmospheric water harvesting system		
CO6	Design solar thermal desalination system		

2.	Syllabus		
	FUNDAMENTALS OF SOLAR ENERGY	(04 hours)	
	Energy demand and potential of solar energy, Reckoning of time, Solar angles, and resource	Solar radiation	
	SOLAR COLLECTOR	(16 hours)	
	Flat Plate Collector: Basic elements, Performance analysis, Absorptivity, coefficients and correlations, Collector efficiency and heat removal factors, Eff parameters, Case study: application of flat plate collector for air heating and w	fect of various	
	Evacuated tube Collector: Principle of working, advantages of evacuated tube flat plate collector, Types of evacuated tubes, Thermal analysis, Case study: evacuated tube collector for air heating and water heating.		
	Parabolic trough collector: Principle of working, optical and thermal analys trough collector, End effect and blocking in a parabolic trough collector application of parabolic trough collector for process heat.	and the same and	
	Parabolic dish collector and Scheffler reflector: Principle of working, construmechanism, application of parabolic dish collector and Scheffler reflector.	ction, tracking	
	SOLAR REFRIGERATION AND AIR CONDITIONING	(10 hours)	

Scope of solar cooling, Photovoltaic refrigeration, Adsorption/ absorption resolar heat, solid and liquid desiccant, construction of desiccant bed, desic desiccant coated heat exchanger. Heat and mass balance of desiccant wheel, or principle of working of solar powered desiccant air conditioning system, so collector, Energy, exergy and economic analysis. Concept of heat storage.	ccant wheel and Construction and
ATMOSPHERIC WATER HARVESTING USING SOLAR HEAT	(08 hours)
Need of atmospheric water harvesting system, selection of desiccant maccollector, Construction and principle of working of solar powered atmospheric system, effect of design and operating parameters on daily yield and economic analysis.	nospheric water
SOLAR THERMAL DESALINATION	(07 hours)
Need of desalination system, types of desalination techniques, solar there solar still, improvements in solar still, limitations of solar still, Humidification-desalination using solar heat, selection of solar collector, heat and mass balar packing materials of humidifier effect of design and operating parameter Energy, exergy and economic analysis.	dehumidification nce of humidifier,
(Total Contact T	ime: = 45 Hours)

3.	Books Recommended
1	Kalogirou S. A., Solar Energy Engineering: Processes and Systems, Academic Press, 3 rd Edition, 2023
2	Garg H.P., Prakash J., Solar Energy: Fundamentals and Applications, Tata McGraw-Hill, 1st Revised Edition, 2016
3	Goswami D. Y., Principles of Solar Engineering, CRC Press, 4th Edition, 2022
4	Duffie J. A., Beckman W.A., Solar Engineering of Thermal Processes, John Wiley and Sons, 4 th edition, 2013
5	Sukhatme S., Nayak J: Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 3rd edition, 2008

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7	Scheme	L	Т	Р	Credit
SURFACE ENGINEERING & HEAT TREATMENT (ELECTIVE-VI)		3	0	0	03
ME499		_	_		

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Describe the importance of surface engineering and heat treatment.
CO2	Summarize concepts of various surface coating techniques.
CO3	Determine phase transformation mechanism during heat treatment.
CO4	Analyze various phases achieved through heat treatment and its significance
CO5	Distinguish heat treatment processes adopted for various ferrous and non-ferrous metals.
CO6	Express significance of various furnaces used for heat treatment.

2.	Syllabus			
	INTRODUCTION TO SURFACE ENGINEERING	(05 hours)		
	Introduction to surface modification, need for surface modification, surface engineering properties, importance of substrate and their pretreatment. Surface engineered materials in modern engineering application. Industrial describing surface failures.	Significance of		
	SURFACE ENGINEERING PROCESSES	(10 hours)		
	Classification of surface engineering processes. Various chemical/thermochem processes, electro-deposition and electro-less deposition techniques, various surfacing techniques. Evaluation of coatings, process parameters, criteria for selection of surface engineering techniques based on coatings and surface modification of important engineering componer.	orious vapour importance of , case studies		
	PHASE TRANSFORMATION DURING HEAT TREATMENT	(07 hours)		
	Principle of heat treatment, variables of heat treatment, effect of heat treatment properties of materials. Recapitulation of phase diagram and TTT diagrams transformation mechanism in steel during heat treatment, decomposition transformation products of austenite: pearlite, bainite, martensite, etc., so retained austenite. Effect of heat treatment cycle on microstructure.	agram. Phase of austenite		

डी.ओ.एम.इ

DOME

HEAT TREATMENT OF FERROUS ALLOYS	(10 hours)			
Study of microstructural changes at various temperatures during slow cooling of steel. Influence of alloying elements on phase stability. Heat treatments for carbon steels, alloy steels, structural and tool steels, cast irons, etc. Hardenability of steels, effect of quenching media, PWHT. Surface treatment processes.				
HEAT TREATMENT OF NON-FERROUS ALLOYS	(7 hours)			
Principle of heat treatment for non-ferrous alloys. Heat treatment of aluminium alloys, magnesium alloys, copper and its alloys, nickel alloys and titanium alloys.				
FURNACES AND OTHER ISSUES DURING HEAT TREATMENT	(06 hours)			
Classification of heat treatment furnaces, controlled atmospheres for fur treatment practices. Distortion in heat treated components, possible remedies. Air pollution during heat treatment, environmental and safety economy of heat treatment.	defects, causes and			

3.	Books Recommended	
1	T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies, 1 st Edition, CRC press, 1999.	
2	M. Ohring, Material Science of Thin Films, 2 nd Edition, Academic press, 2002	
3	J. Takadoum, Materials and Surface Engineering in Tribology, 1 st Edition, John Wiley & Sor 2008	
4	T. V. Rajan, C. P. Sharma and A. Sharma, Heat Treatment: Principles and Techniques, 2 nd Edition, PHI Learning Pvt. Ltd., 2011	
5	R. C. Sharma, Principles of Heat Treatment of Steels, 1st Edition (Reprint), New Age International, 2018	

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 HYBRID MACHINING PROCESSES (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME501		3	0	0	03

	Course Outcomes (COs): At the end of the course, students will be able to		
CO1	Select machining process (es), tool (s) and machine tool (s) to produce a given part.		
CO2	Illustrate effect of machining parameters on process performances.		
CO3	Explain working principle and machine setup of hybrid machining processes.		
CO4	Analyze mechanism of material removal for hybrid machining processes.		
CO5	Identify the need and capabilities of hybrid machining processes.		
CO6	Demonstrate the hybrid micromachining and technologies		

2.	Syllabus				
	INTRODUCTION TO HYBRID MACHINING PROCESSES	(04 hours)			
	Introduction to hybrid machining processes, needs, evolution, importance, challenges, classification, current scenario and scope in modern industries.				
	COMBINED HYBRID MACHINING PROCESSES- I	(12 hours)			
	Elements of process, needs, principles, material removal mechanism, effect of process parameters, equipment, variants, processes capabilities, limitations and applications of Electro-chemical energy-based hybrid machining processes: Electrolytic magnetic abrasive machining, Electrochemical grinding, Electrochemical honing, Electrochemical buffing, Electrochemical superfinishing.				
	Electrochemical superfinishing.	, and a summer			
	COMBINED HYBRID MACHINING PROCESSES- II	(10 hours)			
		(10 hours) ect of process applications of			

DoME

al Institute of

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

Elements of process, needs, principles, material removal mechanism, effect of process
parameters, equipment, variants, processes capabilities, limitations and applications of
Vibration assisted HMPs: Ultrasonic assisted- electrical discharge machining; Ultrasonic
assisted- electrochemical machining, Heat assisted HMPs: Laser assisted- electrical discharge
machining, Laser assisted- electrochemical machining; Laser assisted- conventional and non-
conventional machining; Spark assisted chemical engraving; Abrasive assisted HMPs: Abrasive
assisted- electrical discharge machining, Abrasive assisted- electrochemical machining.

ASSISTED HYBRID MACHINING PROCESSES- II

(07 hours)

Elements of process, needs, principles, material removal mechanism, effect of process parameters, equipment, variants, processes capabilities, limitations and applications of Magnetic field assisted HMPs: Magnetic field assisted electrical discharge machining, Magnetic field assisted-flow finishing; Electrorheological fluid assisted ultrasonic machining, Introduction to hybrid micromachining and technologies.

(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	V. K. Jain, Advanced machining processes; Allied publishers, 2009
V. K. Jain (ed.), Nanofinishing Science and Technology: Basic and Advanced Fin Polishing Processes; CRC Press, Taylor & Francis Group, Boca Raton, USA, 381-	
3	M.M. Sundaram, Hybrid Machining Process. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London, 2014
4	Xichun Luo and Yi Qin, Hybrid Machining: Theory, Methods, and Case Studies, Elsevier Ltd., 2018
5	Rupinder Singh and J. Paulo Davim, Non-Conventional Hybrid Machining Processes: Theory and Practice, CRC Press, 2024

B.Tech. IV (DoME) Semester – 7 PROJECT MANAGEMENT (ELECTIVE-VI)	Scheme	L	Т	Р	Credit
ME503		3	0	0	03

	e end of the course, students will be able to	
CO1	Explain the introductory concepts related feasibility assessments and define the role, skills and functions of a project manager.	
CO2	Design various mathematical/analytical models for project monitoring & control and the network for project execution.	
соз	Solve and analyses various problems related to financial models towards budgeting an project feasibility & risk assessment.	
CO4	Define and cite the key concepts related to financial management of real projects.	
CO5	Analyze or models incorporating financial ratio analysis towards the assessment of firms' overall financial Status.	
CO6	Develop the ability to solve for financial modelling problems adapting to real project execution practices using mathematical/analytical approaches.	

2.	Syllabus			
	PROJECT MANAGEMENT AND FEASIBILITY	(09 hours)		
	Introduction to projects. Characteristics and types of projects, Gaining importance, Project selection, technical feasibility and technology selection, project life cycle, market feasibility, Social Cost Benefit Analysis, project manager's skills and functions, learning curves.			
	PROJECT MONITORING AND CONTROL	(09 hours)		
	Network analysis, construction of networks, CPM, various types of floats and their application, PERT and its applications. Time cost relationship, crashing for optimum cost and optimum time. Resource leveling. Earned Value Analysis.			
	FEASIBILITY AND RISK ANALYSIS	(09 hours)		
	Time value of money, DCF and Non DCF Methods for Evaluating Projects. Types of risk, techniques of risk evaluation and its mitigation. Sensitivity analysis, Hiller's model, scenario analysis, simulation with numerical aspects.			
	FINANCIAL MANAGEMENT AND ANALYSIS	(09 hours)		

Concept, Nature, Scope, and Objective of Financial Management, Finance of Finance. Liquidity, Activity, Profitability and Leverage Ratios. Interpre	
CAPITAL STRUCTURING AND WORKING CAPITAL MANAGEMENT	(09 hours)
Cost of Capital, Cost of Debt, Preference shares, Equity Shares, Weighted Average Cost of Capital. Working Capital: Concept, Need and Determinants. Computing working capital.	
(Total Cont	act Time: = 45 Hours

3.	Books Recommended
1	Prasanna Chandra, Projects, planning, analysis, selection, financing, implementation and review, Tata McGraw Hill, New Delhi, 2002
2	I.M. Pandey, Financial Management, Vikas Publication House, New Delhi, 2015
3	M.Y. Khan, P.K. Jain, Financial Management, Tata McGraw Hill, New Delhi, 2018
4	C.F. Gray, E.W. Larson and G.V. Desai, Project Management: The Managerial Process, 7 th Edition, New York: McGraw-Hill/Irwin, 2017
5	K. Schwalbe, Introduction to Project Management, Boston: Course Technology, 2 nd Edition, Cengage Learning, 2009

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 ADVANCED VIBRATION (HONORS)	Scheme	L	Т	Р	Credit
MEHD4		3	1	0	04

27 <u>0.</u>	1. Course Outcomes (COs): ne end of the course, students will be able to	
CO1	Explain different vibration systems.	
CO2	Analyse single and multi-degree freedom systems.	
CO3	Solve the problems related to isolation and stability criteria.	
CO4	Analyze the vibration and fault detection in rotating components.	
CO5	Illustrate different vibration systems.	
CO6	Analyse single and multi-degree freedom systems.	

2.	Syllabus	
	INTRODUCTION	(07 Hours)
	Free and forced vibrations with and without damping, transient vibrations, Lap formulation	blace transform
	ISOLATION AND STABILITY CRITERION	(08Hours)
	Vibration isolation and transmissibility, undamped vibration absorbers, self-excriterion of stability, effect of friction on stability	ited vibrations,
	NONLINEAR VIBRATION	(10 Hours)
	Free vibration with nonlinear spring force or nonlinear damping, phase plane, Lienard's graphical construction, methods of isoclines, random vibration, plansity, bandwidth in vibration, numerical methods for vibration analysis continuous systems, Euler equation for beams, effect of rotary inertia and shear	oower spectral s, vibration of
	VIBRATION ANALYSIS OF ROTORS	(10 Hours)
	Transverse vibrations single, two and three rotor systems, critical speeds of svibrations of rotors: one, two and three disc rotor system, frequency of tors systems, coupling of torsional and bending vibrations due to pre-twist and ecc faults, forward and backward rotor whirl model, variable elasticity effects in ro	sional vibration entricity, rotor

डी.ओ.एम.इ

al Institute of

DoME

flow induced vibration in rotating systems, Newkirk effect, str disc of uniform strength, thermal stresses	esses in rotating disc and sie
DIAGNOSTIC TECHNIQUES	(10 Hours
Introduction to diagnostic maintenance and instrumentation in amplitude, frequency and phase characteristics, signature and plot, frequency-domain plot, FFT, spectrum plot, fault detection intelligence techniques applied to vibration analysis	lysis-trend plot, time-domain
	Total Contact Time: = 45 Hor

3.	Books Recommended
1	S. S. Rao. Mechanical Vibrations, 4thEdition, Pearson Education, 2007
2	L. Meirovitch. Fundamentals of Vibrations, McGraw Hill, 2001
3	E. Krämer. Dynamics of Rotors and Foundations, Springer-Verlag, New York, 1993
4	R. Subbiah and J. E. Littleton. Rotor and Structural Dynamics of Turbomachinery-A Practical Guide for Engineers and Scientists, Springer International Publishing, 2018
5	G. Genta. Dynamics of Rotating Systems, Springer, New York, 2005

B.Tech. IV (DoME) Semester – 7 DESIGN AND ANALYSIS OF ROTODYNAMIC	Scheme	L	Т	Р	Credit
MACHINES (HONORS)		3	1	0	04
MEHT4			-		

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the working principles of Rotodynamic machines and apply it to various types of turbomachines
CO2	Design compressors and gas turbines.
CO3	Determine the off-design behavior of axial and Radial turbines and compressors
CO4	Design pumps and hydro turbines
CO5	Establish performance characteristics curves of thermal and hydro Rotodynamic machines
CO6	Assess & analyze the performance outcomes of thermal and hydro Rotodynamic machines.

2.	Syllabus	
	DESIGN OF CENTRIFUGAL COMPRESSORS	(06 Hours)
	Components of centrifugal compressor, velocity diagrams, slip factor, energy trainput factor, Mollier chart, stage pressure rise and loading coefficient, degree pre-whirl and inlet guide vanes, kinematic parameters, Centrifugal compresection, Impeller passages, operational range, velocity variation, Losses.	or reaction,
	DESIGN OF AXIAL FLOW COMPRESSORS	(15 Hours)
	Description of axial flow compressor, Mollier chart, velocity diagrams, Stage of Blading efficiency, Design parameters, Blade loading, reaction ratio, Lift of solidity, Three dimensional flow considerations, Radial equilibrium design approach disc theory approach, Design procedure and calculations, free vortex blade, for solid rotation blades, constant reaction blade, multistage compression, see (passage vortex, trailing vortex, corner vortex, horseshoe vortex, leakage vortex) and loss assessment, rotating stall, surge, chocking, operating range.	oefficient and oach, Actuator rced vortex or econdary flow
	DESIGN OF TURBINE FLOW PASSAGES	(06 Hours)

efficiency), reheat factor, losses in turbine, h – s diagrams of turbines.	
DESIGN OF IMPULSE TURBINE FLOW PASSAGES	(08 Hours)
Velocity triangles, work and energy relationship, stage efficiency, Blade Blade height, Blade entrance and exit angles, Geometry of impulse blade impulse blade passages, Design procedure for single stage and multistage diagram efficiency of a two-stage turbine, Pressure compounding (Rateau compounding (Curtis Turbine), Pressure and Velocity compounding. efficiency of a Pelton wheel turbine, heads and efficiencies of Pelton wheel	profiles, Losses in impulse turbines, Turbine), Velocity Work done and
DESIGN OF REACTION TURBINE FLOW PASSAGES	(06 Hours)
Reaction blade profiles, Blade angles, Blade width and height, Losses passages, Degree of reaction, design procedure for impulse reaction turn for axial thrust, Turbines for optimum capacity.	
HYDRAULIC DESIGN OF CENTRIFUGAL PUMPS	(04 Hours)
Fundamental Equation of centrifugal pump, work done and manometric erise in pump impeller, overall, mechanical, volumetric and manometric virtual and Manometric heads, Net Positive Suction Head, one dimensional	c efficiency, ideal

3.	Books Recommended
1	Dynamics of Rotating Machines, Michael I. Friswell et al., Cambridge University Press, 2024.
2	Rotodynamic Pumps (Centrifugal and Axial), K. Srinivasan, Springer, 2024.
3	Design, Modeling and Reliability in Rotating Machinery, Robert X. Perez, Wiley, 2022.
4	Turbines, Compressors, and Fans, S. M. Yahya, Tata McGraw Hill, 4th edition, 2011.
5	Sawhney G. S., "Thermal and Hydraulic Machines", Prentice Hall India Learning Pvt. Ltd., India, 2011

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 METAL ADDITIVE MANUFACTURING (HONORS)	Scheme	L	Т	Р	Credit
МЕНМ4		3	1	0	04

10.000	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Classify the metal AM processes, and explain tool path generation & slicing methods.
CO2	Explain principles of metal additive manufacturing methods.
CO3	Describe the metallurgical and manufacturing quality assessment for metal AM.
CO4	Show various heat sources and their interaction with different feedstocks.
CO5	Compare the different metal AM processes and describe machine architectures.
CO6	Outline the pre & post processing for metal additive manufacturing.

2.	Syllabus				
	INTRODUCTION TO ADDITIVE MANUFACTURING (AM)	(04 Hours)			
	Need for additive manufacturing (AM), Manufacturing systems, Introduction to additive manufacturing (AM), Classification of additive manufacturing. Current and future estimation for metal AM market size, Applications of metal AM, Challenges and opportunities. Classification of metal additive manufacturing processes.				
	CAD DATA AND PRE-PROCESSING FOR AM	(4 Hours)			
	CAD for additive manufacturing, CAD model development; Additive man formats, Defects and Issues in Data Formats; Pre-processing - Part orientatio structure generation, Design of support structure, Model slicing, Contour generation, Build file preparation, Machine set-up.	n and support			
	METAL AM PROCESSES AND PHYSICS, LASER/ELECTRON BEAM AND BINDER JETTING	(09 Hours)			
	Basic Processes: Direct Energy Deposition (DED) and Power Bed Fusion (PBF). AM Machine system and setup. Laser Beam: LASER theory, LASER generation unit, continuous and pulsed LASER, Type of LASER. Electron Beam: basics of electron beam, electron beam mechanism, electron beam for powder bed fusion. Process Parameters: AM process parameters, beam scanning strategies, parameters for PBF and DED, powder properties for PBF and DED				

डी.ओ.एम.ई

DoME

b. recii. Tv, reciianical Engineering (As per reci)
techniques for powder production, wire properties for DED, ambient parameters for PBF, and
DED

DED, geometry specific parameters for PBF, support structure for PBF.	13 101 1 D1, and	
METAL AM PROCESSES AND PHYSICS: BINDER AND MATERIAL JETTING	(03 Hours)	
Basic Process: Binder Jetting (BJ). AM Machine system and setup. Process Pa process parameters, powder properties for BJ, Techniques for powder product parameters for BJ, and geometry specific parameters for BJ, support structure for BJ, support struct	tion, ambient	
FEEDSTOCKS, EMERGING METAL AM PROCESSES: FILAMENT, POWDER AND SHEET SYSTEMS	(06 Hours)	
Wire Fed Systems: Wire feed systems, positioning devices, printing heads. Systems: powder feeders and types, powder delivery nozzles, powder bed spreading system. Emerging Metal AM Processes: Material Extrusion, Material Lamination. AM Machine system and setup. AM process parameters.	delivery and	
MECHANICAL AND METALLURGICAL PROPERTIES OF AM PARTS	(09 Hours)	
Metal AM Printed Parts: mechanical properties- tensile and static strength, fatige hardness, common defects in metal AM printed parts. Solidification: manufactur materials, traditional and AM, solidification of metals, equilibrium and no phases for solidification: theory and mechanism for AM, description of metal AM diagrams: Iron-carbon, Al-alloy, Ti-alloy, and Ni-alloy. Intermetallic compounds, redissimilar AM, corrosion.	ing of metallic on-equilibrium M parts. Phase	
POST PROCESSING AND TESTING	(03 Hours)	
Need of post processing, product quality evaluation, support structure rem surface finishing, geometry and aesthetics, post processing techniques for me Non-destructive testing metal AM parts.		
DESIGN FOR ADDITIVE MANUFACTURING	(04 Hours)	
Core concepts and objectives, Principles of design for manufacturing and assemble approach to design for additive manufacturing: Guidelines and rules for Topology optimization and generative design, exploring design freedom, design	part building,	
RECENT TRENDS IN METAL ADDITIVE MANUFACTURING	(03 Hours)	
Composite 3D printing, 3D printing of bioimplants, 3D printing in space, 4D printing in	nting.	
(Total Contact Time	e: = 45 Hours)	

3.	Books Recommended
1	lan Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: 3D Printing,
	Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2015. ISBN 978-1-4939-2112-6
2	R. Leach, and S. Carmignato, eds., Precision Metal Additive Manufacturing, CRC Press, 2020.
3	K.R. Balasubramanian, and V. Senthilkumar, eds., Additive Manufacturing Applications for Metals and Composites, IGI Global, 2020.
4	R.M. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials, Engineering Materials and Processes, Springer International Publishing AG, 2018.
5	Hod Lipson and Melba Kurman, The New World of 3D Printing, Wiley, 2013. ISBN 978-1-118-35063-8

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

B.Tech. IV (DoME) Semester – 7 ENERGY CONSERVATION, MANAGEMENT AND	Scheme	L	Т	P	Credit
AUDIT (HONORS)		3	1	0	04
MEHE4					

	e end of the course, students will be able to
CO1	Apply various energy conservation techniques to estimate energy saving potential in various thermal and electrical utilities.
CO2	Compare various appliances/utilities based on their stars and labelling, benchmarking values, PAT Scheme in industries.
CO3	Calculate the usage of energy for a given industrial thermal/electrical utility and suggest suitable way to minimize energy bill.
CO4	Analyse the saving potential of Cogeneration option for process industry.
CO5	Determine Energy conservation potential in various industrial utilities like fans, blowers, compressors, pumps etc.
CO6	Compute various performance parameters of HVAC systems and suggest suitable ways for improving energy efficiency.

2.	Syllabus					
	GLOBAL AND NATIONAL ENERGY SCENARIO	(08 Hours)				
	Energy consumption in various sectors, Energy resources like Coal, Oil, and Natural Gas — their demand and supply management, Indian energy scenario, Indian Coal & LPG scenario, Primary and Secondary Sources of Energy, Commercial and Non-Commercial Sources, India's installed energy capacity, per capita energy consumption. General aspects of Energy conservation and management, Roles of energy auditors, Roles of an energy manager, Energy policy of industry, Energy Conservation Act and its amendments, PAT Scheme.					
	ENERGY EFFICIENCY IN BOILER, STEAM, AND FURNACE SYSTEM UTILITIES	(10 Hours)				
	Energy conservation opportunities in boiler systems, retrofitting of FBC in conventional boilers, Steam line distribution standard practices including sizing and layouts, selection, operation, maintenance of steam traps, and energy-saving opportunities in steam systems. Energy Efficiency in Furnaces: Sankey diagram, Fuel economy measures in furnaces Insulation and Refractories: Types of insulations, Economic thickness of insulation, Typical refractories for industrial applications. Benchmarking in Slass and Steel Industries.					

DOME

ENERGY EFFICIENCY IN FURNACES AND REFRACTORIES:	(07 Hours)	
Sankey diagram, Fuel economy measures in furnaces Insulation and Refractor insulations, Economic thickness of insulation, Typical refractories for industrial Benchmarking in Glass and Steel Industries.		
COGENERATION	(07 Hours)	
Principle of cogeneration, Technical options for cogeneration, Factor cogeneration choice, Important technical parameters for cogeneration, case studies with and without cogeneration.		
ENERGY CONSERVATION IN FANS, BLOWERS COMPRESSORS, AND PUMP SYSTEMS	(08 Hours)	
Energy-saving opportunities, performance evaluation and efficient system oper Systems: Efficient operation of the compressed air system, Leakage tests. Pump Pumping Systems: Pump curves, factors affecting pump performance, Energy lo throttling, Effects of impeller diameter change, Flow control strategy, Variable s	os and oss in	
and Energy conservation opportunities. ENERGY CONSERVATION IN HVAC AND COOLING TOWERS	(05 Hours)	
HVAC: factors affecting the performance and energy savings opportunities in H	VAC.	
Cooling towers: Cooling towers: types and performance assessment & limitation in cooling tower. Energy Saving in Cooling Towers.	ns, water loss	
(Total Contact Time: = 45 Ho		

3.	Books Recommended
1	General Aspects of Energy Conservation, Management and Audit: Guide Book for Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of Power
2	Energy Efficiency in Electrical Utilities: Guide Book for Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of Power
3	Energy Efficiency in Thermal Utilities: Guide Book for Energy Managers and Energy Auditors; Bureau of Energy Efficiency, Ministry of Power
4	S. A. Roosa, Energy Management Handbook, Fairmont Press, 2018
5	Wayne C Turner, Energy Management Handbook. Prentice Hall 3rd Edition, 2000

B.Tech. IV (DoME) Semester – 7 INDUSTRIAL ENGINEERING AND MANAGEMENT	Scheme	L	Т	Р	Credit
(MINORS)		3	1	0	04
MEM44					

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Demonstrate and apply selected industrial engineering techniques for enhancing productivity in an organization.
CO2	Apply the various forecasting and project management techniques.
CO3	Select the concept of break-even analysis, inventory control and resource utilization using queuing theory.
CO4	Utilize principles of work study and ergonomics for design of work systems.
CO5	Formulate mathematical models for optimal solution of industrial problems using linear programming approach.
CO6	Understand functions of a product/service and apply Value engineering and Reliability in real industrial problems.

2.	Syllabus				
	OVERVIEW OF INDUSTRIAL ENGINEERING	(10 hours)			
	Types of production systems, concept of productivity, productivity measurement in manufacturing and service organizations, operations strategies, liability and process design. Facility location and layout: Factors affecting facility location; principle of plant layout design, types of plant layout; computer aided layout design techniques; assembly line balancing; materials handling principles, types of material handling systems, methods of process planning, steps in process selection, production equipment and tooling selection, group technology, and flexible manufacturing.				
	PRODUCTION PLANNING & CONTROL AND PROJECT MANAGEMENT	(08 hours)			
	Forecasting techniques—causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; materials requirement planning (MRP) and MRP-II; routing, scheduling and priority dispatching, concept of JIT manufacturing system. Project Management: Project network analysis, CPM, PERT and Project crashing.				
	ENGINEERING ECONOMY AND INVENTORY MANAGEMENT	(08 hours)			

Department of Mechanical Engineering B.Tech. –IV, Mechanical Engineering (As per NEP)

Definition and meaning of management, Methods of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statements, time-cost trade-off, resource levelling; Inventory functions, costs, classifications, deterministic inventory models, perpetual and periodic inventory control systems, ABC analysis, and VED analysis. Queuing Theory: Basis of Queuing theory, elements of queuing theory, Operating characteristics of a

WORK SYSTEM DESIGN AND PRODUCT DESIGN & DEVELOPMENT

queuing system, Classification of Queuing models.

(07 hours)

Work System Design: Taylor's scientific management, Gilbreths's contributions; work study: method study, micro-motion study, principles of motion economy; work measurement—time study, work sampling, standard data, Predetermined motion time system (PMTS); ergonomics; job evaluation, merit rating, incentive schemes, and wage administration. Product Design and Development: Principles of product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, and concurrent engineering.

OPERATIONAL ANALYSIS

(12 hours)

Operational Analysis: Formulation of LPP, Graphical solution of LPP, Simplex Method, Sensitivity Analysis, degeneracy and unbound solutions. Transportation and assignment models; Optimality test: the stepping stone method and MODI method, simulation.

(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	Martand T Telsang, Industrial Engineering and Production Management, 3 rd Edition, S. Chand Publishing, 2018.
2	M. Mahajan, Industrial Engineering and Production Management, Dhanpat Rai & Co. (P) Limited, 2015.
3	Ravi Shankar, Industrial Engineering and Management, 2 nd Edition, Galgotia Publications Pvt Ltd., 2000.
4	P. K. Gupta and D. S. Hira, Operations Research, 11 th Edition, S. Chand & Co., 2015.
5	Adam and Ebert, Production and Operation Management, 5 th Edition, Pearson Education Asia, 2003.

